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The signi� cant parameters in de� ning the movement of the Beetle
and its capture of intersection points have been ascertained and
implemented within the code. The sample grid generated around
several shapes shows the versatility of the code. It is intended to
extendthismethodologyto shapesin threedimensionsbyconverting
the movement of the Beetle to that of a “paint brush” (de� ned by
an elemental arc), which traverses an arbitrary surface (paints the
surface), and thereby collating the intersecting boundaries of the
hexahedral cells. A � ow solver based on Colella et al.1 is being
developed to generate � ow solutions.
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Introduction

I N the past decade, a variety of numerical optimization algo-
rithms have been extensively used to address multidisciplinary

design optimization (MDO) problems that deal with design pro-
cesses that are dependent on interactions among several engineer-
ing disciplines. MDO consists of many challenging features, such
as a heterogeneous mix of analysis codes for evaluating objective
functions, a large number of design variables, discrete design pa-
rameter values, and complex constraints.Local optimization strate-
gies, such as gradient-based algorithms, have been widely applied
to engineering system designs.1,2 Although the number of design
iterations required by local optimizers can be small, a major short-
coming of local optimizers is that they may get trapped in local
optima. Although the performance of local optimizers can be en-
hanced by sensitivity analysis, such as that given in Ref. 2, which
reduces the number of objective function evaluations in the opti-
mization process, it is often accomplished at the expense of addi-
tional work in constructing models for estimating sensitivities. In
some cases the use of approximate derivatives in estimating sensi-
tivities (see Ref. 1) can lead to a loss of accuracy in the optimization
process.
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Besides deterministicmethods for optimization,globaloptimiza-
tion methods that are robust in avoiding local optima have found
applications recently in practical designs. The simulated anneal-
ing (SA) method and the genetic algorithm (GA) have recently
shown promise in addressing MDO engineering problems. Both
SA algorithms and GAs are stochastic in nature and are easily im-
plemented in robust computer codes compared with determinis-
tic methods. However, the SA method and the GA require a large
number of function evaluationsand longer computation time, espe-
cially in complex design problems that couple interactionsbetween
multiple disciplines, such as � uids and structures, and that have
a large number of design variables. Hence, to shorten the compu-
tation time, it is imperative that SA and the GA be implemented
by high-performance computing technologies such as parallel
computing.

Our aim is to compare the performance of deterministic and
stochastic optimization methods by applying these to generic air-
craft wing design problems to guide the use of these methods for
MDO problems.The design problem considered for this study con-
cerns the design of the optimalwing shape for minimizing drag with
weight of the wing as a constraint so that the interaction between
aerodynamicsand structural weight in� uences the determinationof
the best wing shape.The optimizationalgorithmsused for this prob-
lem are the SA method, the GA, the gradient-basedmethod (GM),
the Powell search method, the parallel SA (PSA) method, and the
parallel GA (PGA). These methods are outlined brie� y in the fol-
lowing section, and their performances in design optimization of
the selected problem are compared.

Optimization Algorithms
The optimization algorithms used in this study are classi� ed into

stochastic (global search) methods (SA, GA, etc.) and determin-
istic (local search) methods (GM, Powell method, etc.). SA is a
search of the design space with the goal of � nding a global min-
ima, as in Ref. 3. In SA, the optimization problem is simulated as
an annealing process, and SA possesses a formal proof of con-
vergence to global optima, although this proof relies on a very
slow cooling schedule and suf� ciently large initial temperature.
The GA is a computerized search, and optimization algorithms
are based on the mechanics of natural genetics and natural selec-
tion, as Ref. 4. The basic mechanism of GAs is provided by re-
production and crossover processes. Hence the GA can be applied
for optimizing objective functions in design spaces that are mul-
timodal or discontinuous. The GA searches from a population of
points, and the survival-of-the-�ttest strategy increases the proba-
bility of � nding the global optimum in multimodal or convex search
spaces.

The GMs have the advantageof fast convergencein locating local
minima, for which reasonablyaccuratederivativescan be estimated
in a cost-effectivemanner. However, the tendencyfor the GM’s get-
ting trapped in local minima is high. GMs are suitable for searching
convex design spaces with continuousderivatives. In this work, the
Broydon–Fletcher–Goldfarb–Shanno (BFGS) method outlined in
Ref. 5 is used for the optimizationprocess. If the objective function
does not possesscontinuousderivatives,a direct searchmethod such
as Powell’s method, as outlined in Ref. 6, might be more suitable
for design optimization.Powell’s method uses a history of previous
solutions to create new search directions and only function values
at different points are needed.

It is imperativethatmethodsto reducecomputationaltime beused
for implementingglobaloptimizationalgorithms.A number of pos-
sibilities exist for this. One way is to incorporate modi� cations to
basic SA and the GA; for example, in SA, a wise choice of the cool-
ing schemeand the length of Markov’s chainscan result in moderate
computational savings. The advent of parallel-processingarchitec-
ture and ef� cient message-passing libraries offer the possibility of
parallelizing SA and the GA. A parallel SA algorithm proposed
by Diekmann et al.7 was developed with the MPI library described
in Ref. 8 with the MPT tool and applied to the same problem. The
distributedparallelGA method shows that migration introducedbe-
tween multiple processors and set in a loop is an ef� cient way for
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doing the same problem on coarse-grained multiple processors, as
described in Refs. 9 and 10.

Statement of the Generic Wing Design Problem
The design problem used to compare the various optimization

algorithms concerns the design of a wing shape such that the aero-
dynamic ef� ciency of the wing reaches a maximum value during
cruise with the wing weight acting as a constraint. In cruise � ight
the Breguet–Range equation is given by11

R = (V / f )(L / D) (Wi / Wi + 1) (1)

where R is the range, f is the speci� c fuel consumption, V is the
� ight velocity, L / D is the lift-to-drag ratio or aerodynamic ef� -
ciency, and Wi and Wi + 1 are the weights at the start and the end of
the cruise � ight, respectively.For maximizing range it is imperative
that the aerodynamic ef� ciency be maximized. The goal then is,
by use of optimization methods outlined in the preceding section,
to determine the shape of the wing for minimizing D / L (or maxi-
mizing L / D) with the wing weight as a constraint. The D / L ratio
can be formulated in detail by the analytic formula for aerodynamic
analysis as given by Raymer11:

L = CLq S, CL = CL a a (2)

CL a = 2 p AR 2 + 4 + ( AR b / g )2(1 + tan2 k / b 2) (3)

CDi = C 2
L ( p ARe), CD0 = C f F Q (4)

e = 4.61 1 ¡ 0.045A0.68
R (cos k )0.15 ¡ 3.1 (5)

C f = 0.455 (log10 Re)
2.58(1 + 0.144M 2)0.65 (6)

F = 1 + [0.6/ (x /c)m ](t / c) + 100(t / c)4 [1.34M0.18(cos k )0.28]
(7)

CD = CDi + CD0, D = CDq S, D / L = CD / CL (8)

Wwing = 0.0106(Wdg Nz)
0.5S0.622 A0.75

R (t / c) ¡ 0.4(cos k ) ¡ 1 (9)

Fig. 1 Optimized objective function vs wing weight.

where Wdg is the design gross weight (in pounds), Nz is the ultimate
load factor, Q is the interference-effect factor on drag, t / c is the
airfoil thickness-to-chordratio, c is the mean aerodynamicchord, b
is the wing span, S is the wing reference area (=bc, ft2) AR is the
aspect ratio (b2 / S), b = 1 ¡ M 2, g =0.95–1.0, Q =1.0, and x /cm

is the chordwise location of the airfoil maximum thickness point;
here 0.3 is adopted for the subsonic airfoils. Details of estimating
other parameters such as Re and other parameters can be found in
Ref. 11.

In the design optimization, the objective function is D / L. An
external penalty function method is used to solve constraints opti-
mization and can be presented as

minimize F(X ), F (X ) = D / L + b max 0, g2
j (10)

where X is the vector of design variables, that is, X = (x1, x2 , . . . ,
xn ), the design constraints g j (X ) ·0 are represented as inequality
constraints, and b is the coef� cient of the penalty function. The
four design variables for the generic problem considered are angle
of attack a , wing sweep angle k , wing span b (in feet), and mean
aerodynamicchord c (in feet). The design optimizationis subject to
six constraints, de� ned as follows:

1.0 deg · a · 10.0 deg, 10.0 · b · 50.0

3.5 · c · 10.0, 0.0 deg · k · 35.0 deg

0.5 · AR · 15.0, Wwing · 2473 (lb). (11)

Results and Discussions
For enabling a comparative study, the � ight Mach number

M = 0.7 and t /c =0.12 were used in initiating the optimization
schemes, and the same terminationcriterion j F(Xn + 1) ¡ F(Xn) j ·
0.001 was used to terminatethe optimizationmethods implemented,
except for the GA, for which a reasonable number of generations
were used. Table 1 compares the values of the optimum values of
the objective function and design variables attainedand the number
of evaluationsof the objective function (No ) when the different op-
timizationmethods are used. In the applicationof SA algorithm, the
initial temperature was set to 50 and the cooling parameter c =0.5,
which controls the factor by which the temperature is reduced for
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each iteration. A reasonable value of 10 was chosen for the length
of the Markov chain. More than 600 objective function evaluations
were required for satisfying the speci� ed convergence criterion. In
the application of the GA, 226 generations and 5 populations were
chosen. The crossover parameter was 0.5, and the mutation param-
eter was 0.02. The accuracy was provided by the search interval
divided by possibility parameter Po which was set at 28 ¡ 1. It can
be seen that the GA takes more iterations than SA to reach nearly
the same minimum. The deterministic GM based on the BFGS
method reached convergence in 90 evaluations of objective func-
tion, making it the fastest. The Powell method also demonstrated
fast convergence in searching the local maximum without requir-
ing derivative information of the objective function. Deterministic
algorithms takes fewer function evaluations to reach convergence
compared with stochastic optimization methods. A parallel imple-
mentation of SA, as outlined, was also used in the design optimiza-
tion. All parameters were kept the same as those used in the serial
SA code. The MPT 1.3 (MPI library) compiler is applied on eight
processors of an SGI Origin 2000 shared-memory computer. Opti-
mized results were obtained after 148 function evaluations, and a
satisfactory speedup of 4.4 (de� ned by the ratio of the evaluations
on one processor to the evaluations on eight processors) was also
achieved. A parallel implementation of the GA, i.e., the PGA, was
used based on the same set of parameters used for the serial GA
with each processor handling approximately � ve populations. On
eight processors, the objective function reached a value of 4.443
after 395 evaluations of the objective function, and the speedup
was 2.53. The variation of the objective function and the four de-
sign variables as a function of the wing weight optimized by the
SA method and the GM are compared in Figs. 1 and 2 to show

Table 1 Optimal design results of the wing

Data SA GA GM Powell PSA PGA

(D / L)102 4.437 4.442 4.437 4.437 4.437 4.443
a 3.669 3.682 3.683 3.678 3.676 3.682
b 45.59 44.99 45.56 45.50 45.51 44.99
c 6.196 6.049 6.137 6.054 6.087 5.896
k 0.0370 1.102 0.344 0.104 0.156 1.102
No 653 1000 90 152 148 395

Fig. 2 Design variables vs wing weight.

the differences between stochastic and deterministic optimization
methods.

Conclusion
For the generic aircraft wing design problem considered here,

it appears that deterministic optimization methods have the merits
of fast convergence and fewer function evaluations compared with
stochasticoptimizationmethods.Deterministicmethodsare suitable
for simple problems that have convex search domains. The stochas-
tic optimizationmethods are general methods for handling discrete
variables, nonconvex,and multimodel problems.PSA and PGA are
emerging as promising tools for obtaining optimum designs and are
ef� cient in reducing the computational efforts of stochastic meth-
ods. They are worth investigating further for integrating modern
computational methods such as computational � uid dynamics and
structuraldynamicswith computer-aideddesign to addresscomplex
MDO problems.
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Nomenclature
b = fuel burn
cmax = vector of upper bounds
cmin = vector of lower bounds
D = drag
g = gravity acceleration
gmax = vector of upper bounds on algebraic constraints
gmin = vector of lower bounds on algebraic constraints
h = altitude
L = lift
m = aircraft total mass
m f = fuel mass
T = engine thrust
u = assembled control vector
x = assembled state vector
xE = distance traveled east
y = vector of discretized state and control variables
yE = distance traveled north
a = angle of attack
c = � ight path angle
d T = power level angle
² = thrust angle with respect to body � xed axis
u = bank angle
w = heading

Introduction

F INDING optimal aircraft trajectories by using numerical opti-
mizationmethodsis a well-establishedareaof research.Current

methods in widespread use are based on discretization by using
Hermite-Simpson collocation and direct solution using nonlinear
programming methods. This type of method was pioneered by
Hargraves and Paris1 and is now perhaps the most widely used ap-
proach. In some cases, the numerically computed trajectories have
also been veri� ed by � ight testing.2

In most cases numerical methods are demonstrated on problems
in two dimensions,namely the verticalplane involvingonly longitu-
dinal motion. However, many problems are truly three-dimensional
and require a more general approach. Performance data models for
aircraft are usually rather simple, in particular, the aerodynamic
model.There is usuallyno aerodynamicdata for sideslipor unsteady
effects. If some restrictions are imposed on the three-dimensional
motionof the aircraft,it is possibleto solveproblems in threedimen-
sions by using only the standard performance data for the aircraft
of interest.
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The purposeof this Note is to presenta point-massmodel suitable
for solving multistage trajectory optimization problems in three di-
mensions. The model is � rst discussed, and the numerical method
is described.Finally, the presented method is used to solve an inter-
esting test problem related to in-� ight � utter testing.

Performance Model
The equations of motion for the aircraft are obtained by reduc-

ing the full six-degrees-of-freedom dynamic model of the aircraft
described by Etkin,3 assuming a point-mass model of the aircraft.
Sideslip and unsteady aerodynamic effects are neglected because
these effects have very little in� uence on the type of maneuvering
considered here. Consequently,all maneuvering is assumed to take
place without sideslip. The resulting equations of motion are given
by the system of ordinary differential equations

m ÇV = T cos( a + ²) ¡ D ¡ mg sin c (1)

mV Çc = T sin( a + ²) cos u + L cos u ¡ mg cos c (2)

mV Çw cos c = T sin( a + ²) sin u + L sin u (3)

Çh = V sin c (4)

Çm f = ¡ b (5)

ÇxE = V cos c cos w (6)

ÇyE = V cos c sin w (7)

where a � at, nonrotating earth approximation is assumed.

Multistage Trajectory Optimization
The equations of motion de� ned by Eqs. (1–5) can be rewritten

in brief form as

Çx = f (x, u) (8)

The distances xE and yE are de� ned as algebraic constraints by
integrating Eqs. (6–7), giving

xE (tF ) =
tF

t = 0

V (t) cos c (t ) cos w (t ) dt (9)

and

yE (tF ) =
tF

t = 0

V (t ) cos c (t ) sin w (t ) dt (10)

Consequently, Eqs. (6) and (7) are not included in Eq. (8).
Additional requirements, such as restrictions on load factor nz ,

dynamic pressure, lift coef� cient, Mach number, and indicated air-
speed Vi are implementedas purelyalgebraicconstraintsin the form

gmin · g(x, u) · gmax (11)

The differentialEq. (8) and algebraic Eq. (11) are discretized by
using Hermite-Simpson collocation4 with state variables interpo-
lated as piecewise third-orderpolynomials and control variables as
piecewise linear functions. The discretized state and control vari-
ables are stored in a � nite-dimensional vector y, together with the
� nal time variables for each stage. The problem may be solved by
usingdifferentstages,each involvinga differentset of stateand alge-
braic equations representing different con� gurations of the aircraft
or differentvehicles, such as a combinationof an aircraft and a mis-
sile. The multistage formulation used was developed in a previous
study.5


